Latest Research

Home>Latest Research>Is the dynamical quantum Cheshire cat detectable?

April 13, 2022

Return to Latest Research

Is the dynamical quantum Cheshire cat detectable?

By Hance J.R., Ladyman J., Rarity J.

Submitted to arXiv on 7 April 2022.

We explore how one might detect the dynamical quantum Cheshire cat proposed by Aharonov et al. We show that, in practice, we need to bias the initial state by adding/subtracting a small probability amplitude (`field’) of the orthogonal state, which travels with the disembodied property, to make the effect detectable (i.e. if our initial state is |↑z⟩, we need to bias this with some small amount δ of state |↓z⟩). This biasing, which can be done either directly or via weakly entangling the state with a pointer, effectively provides a phase reference with which we can measure the evolution of the state. The outcome can then be measured as a small probability difference in detections in a mutually unbiased basis, proportional to this biasing δ. We show this is different from counterfactual communication, which provably does not require any probe field to travel between sender Bob and receiver Alice for communication. We further suggest an optical polarisation experiment where these phenomena might be demonstrated in a laboratory.

Read the whole paper here. 

Important information

Thank you for your interest in the work of the Quantum Communications Hub (2014-2024). The project is now complete but you can still explore all our resources on this website. You can also download our legacy report through this link

Information on the Hub’s SPOQC quantum cubesat mission, scheduled to launch in 2025, can be accessed in this section, but please note that this website will no longer be updated with new content. Information around the launch of the mission will be publicised through press releases.