Latest Research

Home>Latest Research>Experimental quantum conference key agreement

Experimental quantum conference key agreement

Proietti M, Ho J, Grasselli F, Barrow P, Malik M and Fedrizzi A, 2021, ‘Experimental quantum conference key agreement’, Science Advances, vol. 7, no. 23, eabe0395. DOI: 10.1126/sciadv.abe0395

Quantum networks will provide multinode entanglement enabling secure communication on a global scale. Traditional quantum communication protocols consume pair-wise entanglement, which is suboptimal for distributed tasks involving more than two users. Here, we demonstrate quantum conference key agreement, a cryptography protocol leveraging multipartite entanglement to efficiently create identical keys between N users with up to N-1 rate advantage in constrained networks. We distribute four-photon Greenberger-Horne-Zeilinger (GHZ) states, generated by high-brightness telecom photon-pair sources, over optical fiber with combined lengths of up to 50 km and then perform multiuser error correction and privacy amplification. Under finite-key analysis, we establish 1.5 × 106 bits of secure key, which are used to encrypt and securely share an image between four users in a conference transmission. Our work highlights a previously unexplored protocol tailored for multinode networks leveraging low-noise, long-distance transmission of GHZ states that will pave the way for future multiparty quantum information processing applications.

Important information

Thank you for your interest in the work of the Quantum Communications Hub (2014-2024). The project is now complete but you can still explore all our resources on this website. You can also download our legacy report through this link

Information on the Hub’s SPOQC quantum cubesat mission, scheduled to launch in 2025, can be accessed in this section, but please note that this website will no longer be updated with new content. Information around the launch of the mission will be publicised through press releases.