Latest Research

Home>Latest Research>An integrated optical modulator operating at cryogenic temperatures

An integrated optical modulator operating at cryogenic temperatures

Eltes, F., Villarreal-Garcia, G.E., Caimi, D. et al. An integrated optical modulator operating at cryogenic temperatures. Nat. Mater. (2020). doi.org/10.1038/s41563-020-0725-5

Photonic integrated circuits (PICs) operating at cryogenic temperatures are fundamental building blocks required to achieve scalable quantum computing and cryogenic computing technologies1,2. Silicon PICs have matured for room-temperature applications, but their cryogenic performance is limited by the absence of efficient low-temperature electro-optic modulation. Here we demonstrate electro-optic switching and modulation from room temperature down to 4 K by using the Pockels effect in integrated barium titanate (BaTiO3) devices3. We investigate the temperature dependence of the nonlinear optical properties of BaTiO3, showing an effective Pockels coefficient of 200 pm V−1 at 4 K. The fabricated devices show an electro-optic bandwidth of 30 GHz, ultralow-power tuning that is 109 times more efficient than thermal tuning, and high-speed data modulation at 20 Gbps. Our results demonstrate a missing component for cryogenic PICs, removing major roadblocks for the realization of cryogenic-compatible systems in the field of quantum computing, supercomputing and sensing, and for interfacing those systems with instrumentation at room temperature.

Important information

Thank you for your interest in the work of the Quantum Communications Hub (2014-2024). The project is now complete but you can still explore all our resources on this website. You can also download our legacy report through this link

Information on the Hub’s SPOQC quantum cubesat mission, scheduled to launch in 2025, can be accessed in this section, but please note that this website will no longer be updated with new content. Information around the launch of the mission will be publicised through press releases.